
Security Assessment

Skylabs Staking
Aug 11th, 2022

Table of Contents

Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
CKP-01 : Centralization Related Risks

CKP-02 : Weak PRNG

CKP-03 : Quiet Exit on Unstake Failure

CKP-04 : Lack of Validation on Variable `dbID`

CKP-06 : Recommended Usage of *require*

CKP-07 : Third Party Dependencies

CKP-08 : Missing Emit Events

Optimizations
CKP-05 : Redundant Statements

Appendix

Disclaimer

About

Skylabs Staking Security Assessment

Summary

This report has been prepared for Skylabs Staking to discover issues and vulnerabilities in the source code

of the Skylabs Staking project as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Static Analysis and Manual

Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by

industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Skylabs Staking Security Assessment

Overview

Project Summary

Project Name Skylabs Staking

Platform BSC

Language Solidity

Codebase https://github.com/Vetter-ai/vsl-token

Commit
Prelim: ff5de6d28a7b418d2e4b961b6c7f6f61ba963bcf

Review: b293df4d6afcb8568511227dab7b4b3f79a9e9b6

Audit Summary

Delivery Date Aug 11, 2022 UTC

Audit Methodology Static Analysis, Manual Review

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Mitigated Partially Resolved Resolved

Critical 0 0 0 0 0 0 0

Major 1 0 0 1 0 0 0

Medium 0 0 0 0 0 0 0

Minor 3 0 0 2 0 0 1

Informational 3 0 0 2 0 0 1

Discussion 0 0 0 0 0 0 0

Skylabs Staking Security Assessment

https://github.com/Vetter-ai/vsl-token

Audit Scope

ID File SHA256 Checksum

CKP vsl-token-main/vslstaking.sol 505ce6efea86df312c30f36d20662ca7b6cd115ae15f0eae0b0bd9f9ed6e75bd

Skylabs Staking Security Assessment

Findings

ID Title Category Severity Status

CKP-01 Centralization Related Risks Centralization / Privilege Major Acknowledged

CKP-02 Weak PRNG Volatile Code Minor Acknowledged

CKP-03 Quiet Exit On Unstake Failure Coding Style Minor Resolved

CKP-04 Lack Of Validation On Variable dbID Coding Style, Volatile Code Minor Acknowledged

CKP-06 Recommended Usage Of Require Coding Style Informational Acknowledged

CKP-07 Third Party Dependencies Volatile Code Informational Acknowledged

CKP-08 Missing Emit Events Coding Style Informational Resolved

Skylabs Staking Security Assessment

7
Total Issues

Critical 0 (0.00%)

Major 1 (14.29%)

Medium 0 (0.00%)

Minor 3 (42.86%)

Informational 3 (42.86%)

Discussion 0 (0.00%)

https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659484050367
https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659484025397
https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659746632427
https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659748002076
https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659482415832
https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659484025395
https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659484050368

CKP-01 | Centralization Related Risks

Category Severity Location Status

Centralization

/ Privilege
Major

vsl-token-main/vslstaking.sol: 73, 275, 306, 349, 764, 814, 1351, 1403,

1409, 1422, 1437, 1467, 1490, 1504, 1516, 1528, 1621, 1639, 1652, 16

60, 1674, 1690, 1711, 1718

Acknowledged

Description

In the contract Ownable the role _owner has authority over the function SetupAllowedContract() ,

GetAllAllowedAddresses() and transferOwnership() to assign privileged role to any address. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and take

control over the assignment of privileged roles.

Function State VariablesAuthenticated Role

transferOwnership _newOwner_owner

Authenticated Role

Function

Function State Variables
_owner

GetAllAllowedAddresses

SetupAllowedContract allowedCount

Meanwhile, the addresses in mapping _allowedContract can change most of the important state variables

and transfer the tokens within the contract. They are crucial to the distribution of staking rewards, as they

can call DistributeStakingRewards() to generate a new reward distribution, or call

TransferInternalAmount() to withdraw the reward amount and penalty amount.

Specifically, these addresses have authority over the following functions:

DistributeStakingRewards()

Skylabs Staking Security Assessment

https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659484050367

ConsolidateAndBurnDistributions()

CheckTierChange()

InternalTransfer()

AddOrAdjustPackage()

SetVSLContract()

SetVetterContract()

SetTierMultiplier()

SetStakingTransferFee()

SetClaimRewardAmount()

SetUnlockAllFlag()

SetEarlyUnstakeTime()

SetEarlyUnstakePenalty()

SetOldAfterTime()

TransferForeignTokens()

TransferForeignAmount()

TransferInternalAmount()

TransferBNBToAddress()

TransferAllBNBToAddress()

GetNumberOfBurnableDistributions()

GetVSLContract()

GetVetterContract()

Any compromise to any _allowedContract account may allow a hacker to take advantage of this authority

and cause severe consequences to normal staking activities.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would also

mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Skylabs Staking Security Assessment

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the

public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[VSL Team]:

It is important to note that any contract with settings that can be adjusted will have the "Centralization Risks"

warning. The main risk is loss of access to a wallet that can control the functions listed. This will be

mitigated in the future by only providing access to these functions to a DAO or Foundation to make

decisions to be executed. At that point, multi-sig and other means can be used to further reduce any risk. In

addition, code will show that even if many of these functions are called, there are protections in place. For

example, distributing tokens to stakers is a good thing and would not harm anyone if it is called. The fact

that royalties have to be converted to VSL token and added to the contract to be distributed makes this

Skylabs Staking Security Assessment

functionality necessary as there is no way to seamlessly automate that process. Adjusting to the correct

Vetter contract is needed to verify tiers of Vetter token holders, etc. Again, the main concern here is security

of the wallets allowed to perform these functions and that is true and will be mitigated.

Skylabs Staking Security Assessment

CKP-02 | Weak PRNG

Category Severity Location Status

Volatile Code Minor vsl-token-main/vslstaking.sol: 728~729 Acknowledged

Description

On line 724, the code is generating a hash based on block.difficulty , block.timestamp and a constant

number for randomness. block.difficulty , block.timestamp can be influenced by miners to some

extent, and they should be avoided. Referring to Solidity documentation.

724724 // Process the payout to the caller (if needed)// Process the payout to the caller (if needed)

725725 ifif((isRandom isRandom &&&& processed processed !=!= 00 &&&& totalTokensPenalized totalTokensPenalized >> claimRewardAmount claimRewardAmount))

726726 {{

727727 uint256uint256 factor factor == 100100;;

728728 uint256uint256 rand rand == uint256uint256((keccak256keccak256((abiabi..encodePackedencodePacked((blockblock..difficultydifficulty,,

blockblock..timestamptimestamp,, factor factor))))));;

729729 ifif((((rand rand %% factor factor)) >> 3030)) // 70 % chance of payout...// 70 % chance of payout...

730730 {{

731731 // Will need this to check the token balance to pay out...// Will need this to check the token balance to pay out...

732732 ifif((_vslContract _vslContract ==== addressaddress((0x00x0)))) revertrevert MissingTokenContractMissingTokenContract(());;

733733 addressaddress _wallet _wallet == _msgSender_msgSender(());;

734734 IERC20IERC20((_vslContract_vslContract))..transfertransfer((_wallet_wallet,, claimRewardAmount claimRewardAmount));;

735735 totalTokensPenalized totalTokensPenalized -=-= claimRewardAmount claimRewardAmount;;

736736 }}

737737 }}

Recommendation

Instead of using block.timestamp or block.difficulty as a source of randomness, we recommend using

a verifiable source of randomness, such as Chainlink VRF(https://docs.chain.link/docs/get-a-random-

number/), for the purpose of random number generation.

Alleviation

[VSL Team]:

Weak PRNG is very acceptable in this case as it only controls the possibility of a reward IF the function

successfully helps the staker. Worst case, the reward could be guaranteed if the timestamp were influenced,

but no harm comes from a 100% chance rather than a 70% chance of reward as stakers are still helped in

this case.

Skylabs Staking Security Assessment

https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659484025397
https://docs.soliditylang.org/en/v0.8.14/cheatsheet.html?highlight=randomness#global-variables
https://docs.chain.link/docs/get-a-random-number/

CKP-03 | Quiet Exit On Unstake Failure

Category Severity Location Status

Coding Style Minor vsl-token-main/vslstaking.sol: 620 Resolved

Description

During the unstaking process, if penaltyCount > available , and _okToTakePenalty is set to false, the

numToDraw amount will be set to 0. In this case, the function will process to the end quietly, without emitting

an event or updating storage. The user won't receive any notification or feedback on the execution result.

Recommendation

In the mentioned scenario, we recommend either reverting the process with proper error message, or

emitting an event to notify the user of the result.

Alleviation

Fixed in the commit: b293df4d6afcb8568511227dab7b4b3f79a9e9b6.

Skylabs Staking Security Assessment

https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659746632427

CKP-04 | Lack Of Validation On Variable dbID

Category Severity Location Status

Coding Style, Volatile Code Minor vsl-token-main/vslstaking.sol: 704 Acknowledged

Description

In function CollectTokens() , CheckTierChange() and AddOrAdjustPackage() , a dbID is required as input

argument. The code does not use it to update storage or check its validity, but only uses it to emit an event.

This may pose an issue for function CollectTokens() , as the function is callable to all, and the value of

dbID is not validated before emitting the event.

Recommendation

If this variable is necessary, we recommend adding a validity check (especially in CollectTokens()) to

ensure the accuracy of the emitted event.

Alleviation

[VSL Team]:

The dbID check is for event listeners to monitor and helps guide them to the correct event, but no harm

comes from an invalid ID being passed in for the event so no validity check is needed for processing down

the line or internally in the smart contract.

Skylabs Staking Security Assessment

https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659748002076

CKP-06 | Recommended Usage Of Require

Category Severity Location Status

Coding Style Informational vsl-token-main/vslstaking.sol: 469~474 Acknowledged

Description

The code uses if and revert for validity checks, while Solidity provides require function for the same purpose

for slightly lower gas fees.

Recommendation

We recommend using require statements for better syntax and gas cost.

Alleviation

[VSL Team]:

We respectfully disagree with this assessment and have seen and conducted studies that show it is more

efficient to use revert rather than require in terms of gas in many scenarios. This was the reason if...revert

was selected as the standard for this project.

Skylabs Staking Security Assessment

https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659482415832

CKP-07 | Third Party Dependencies

Category Severity Location Status

Volatile Code Informational vsl-token-main/vslstaking.sol: 117~118 Acknowledged

Description

The contract is serving as the underlying entity to interact with Vetter token contract for the value of wallet

tier, which is out of scope of this audit. The scope of the audit treats external entities as black boxes and

assume their functional correctness. However, in the real world, 3rd parties can be compromised and this

may lead to lost or stolen assets. In addition, upgrades of 3rd parties can possibly cause severe impacts. In

this specific case, it may affect the value of multiplier in reward calculation.

Recommendation

We understand that the business logic of VSLStaking requires interaction with Vetter token contract. We

encourage the team to constantly monitor the statuses of the out-of-scope contract to mitigate the side

effects when unexpected activities are observed.

Alleviation

[VSL Team]:

It is necessary for the functionality of staking to know the tier of Vetter held. To mitigate, there is a function

to update the Vetter token contract if needed in the future to sustain this link.

Skylabs Staking Security Assessment

https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659484025395

CKP-08 | Missing Emit Events

Category Severity Location Status

Coding

Style
Informational

vsl-token-main/vslstaking.sol: 1402, 1414, 1437, 1489, 1503, 1515, 1527,

1620, 1638, 1651
Resolved

Description

The function that affects the status of sensitive variables should be able to emit events as notifications to

users.

SetVSLContract()

SetVetterContract()

SetupAllowedContract()

SetTierMultiplier()

SetStakingTransferFee()

SetClaimRewardAmount()

SetUnlockAllFlag()

SetEarlyUnstakeTime()

SetEarlyUnstakePenalty()

SetOldAfterTime()

Recommendation

Consider adding events for sensitive actions, and emit them in the function.

Alleviation

Fixed in commit: b293df4d6afcb8568511227dab7b4b3f79a9e9b6

Skylabs Staking Security Assessment

https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659484050368

Optimizations

ID Title Category Severity Status

CKP-05 Redundant Statements Coding Style Optimization Resolved

Skylabs Staking Security Assessment

https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659640190383

CKP-05 | Redundant Statements

Category Severity Location Status

Coding Style Optimization vsl-token-main/vslstaking.sol: 113 Resolved

Description

113113 usingusing AddressAddress forfor addressaddress;;

The library Address is declared on a using-for directive in VSLStaking but its functionalities are never used.

It does not affect the functionality of the codebase and appear to be either leftovers from test code or older

functionality.

Recommendation

We advise to remove the unused contracts or libraries to better prepare the code for production

environments.

Alleviation

Fixed in commit: b293df4d6afcb8568511227dab7b4b3f79a9e9b6

Skylabs Staking Security Assessment

https://accelerator.audit.certikpowered.info/project/ba9558d0-03e4-11ed-adf0-57da8c46d245/report?fid=1659640190383

Appendix

Details on Formal Verification

Technical description

All Solidity smart contracts from the project that implement the ERC-20 interface are in scope of the

analysis. Each such contract is compiled into a mathematical model which reflects all possible behaviors of

the contract. All subsequent verification results are based on that model, which is designed specifically to be

amenable to automated analysis by theorem provers and symbolic model checkers. Apart from representing

all possible behaviors of the smart contract, the model also incorporates a verification harness that

formalizes the initialization and interaction patterns for the contract. In particular, we use a verification

harness that non-deterministically selects a public or external function and models its execution. The

contract state is initialized non-deterministically (i.e. by arbitrary values) before invocation of the function.

Hence, the mathematical model over-approximates the reachable state space of the contract throughout

any actual deployment on chain. By doing so, all verification results carry over to the contract's behavior in

arbitrary states after it has been deployed. Once the model is constructed, our analysis engine attempts to

prove that all executions of the contract are subsumed by a set of pre-defined specifications which capture

the desired and admissible behaviors of the smart contract. For the scope of this audit, we use 38 property

specifications that cover the functionality of the functions as stated in Sec. Scope.

Assumptions and simplifications

The following assumptions and simplifications have been applied during formal verification:

Gas consumption is not taken into account, i.e. we assume that executions do not terminate

prematurely because they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any of those

functions. That ignores contract invariants and may lead to false positives. It is, however, a safe over-

approximation.

The verification engine reasons about unbounded integers. Machine arithmetic is modeled as

operations on the congruence classes arising from the bit-width of the underlying numeric type. This

ensures that over- and underflow characteristics are faithfully represented.

Formalism for property definitions

Skylabs Staking Security Assessment

This section provides details on the 38 formal specifications that were in scope of the audit. All properties

are expressed in linear temporal logic (LTL). In that context, we consider all invocations and returns from

public and external functions as discrete time steps. Thus, our analysis reasons about the contract's state

upon entering and leaving public and external functions.

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written

<>), we use the following predicates to reason about the validity of atomic propositions. They are evaluated

on the contract's state whenever a discrete time step occurs:

started(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula

cond .

willSucceed(f, [cond]) Indicates an invocation of contract function f within a state satisfying

formula cond and considers only those executions that do not revert.

finished(f, [cond]) Indicates that execution returns from contract function f in a state satisfying

formula cond . Here, formula cond may refer to the contract's state variables and to the value they

had upon entering the function (using the old function).

reverted(f, [cond]) Indicates that execution of contract function f was interrupted by an

exception in a contract state satisfying formula cond .

The verification performed in this audit is restricted to pre- and postconditions of procedure invocations. The

used model consists of a harness that invokes a non-deterministically selected function of the contract's

public and external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function

invocation.

Properties for ERC-20 function transfer(to, amount)

erc20-transfer-correct-amount

It is expected that non-reverting invocations of transfer(recipient, amount) that return true subtract

the value in amount from the balance of the address msg.sender and add the same value to the balance

entry of the recipient address.

[](willSucceed(transfer(to, value), to != msg.sender)[](willSucceed(transfer(to, value), to != msg.sender)

 ==> <> (finished(transfer(to, value), ==> <> (finished(transfer(to, value),

 return == true return == true

 ==> balance[msg.sender] == old(balance[msg.sender]) - value ==> balance[msg.sender] == old(balance[msg.sender]) - value

 && balance[to] == old(balance[to]) + value))) && balance[to] == old(balance[to]) + value)))

erc20-transfer-correct-amount-self

Skylabs Staking Security Assessment

It is expected that non-reverting invocations of transfer(recipient, amount) that return true and where

the address in recipient equals the address of msg.sender (i.e. self-transfers) do not change the balance

of address msg.sender

[](willSucceed(transfer(to, value), to == msg.sender)[](willSucceed(transfer(to, value), to == msg.sender)

 ==> <> (finished(transfer(to, value), ==> <> (finished(transfer(to, value),

 return == true return == true

 ==> balance[to] == old(balance[to])))) ==> balance[to] == old(balance[to]))))

Properties for ERC-20 function transferFrom(from, to, amount)

erc20-transferfrom-revert-from-zero

It is expected that calls of the form transferFrom(from, dest, amount) fail if the address value provided

in the from in-parameter is the zero address.

[](started(transferFrom(from, to, value), from == 0)[](started(transferFrom(from, to, value), from == 0)

 ==> <> (reverted(transferFrom) || finished(transferFrom, return == false))) ==> <> (reverted(transferFrom) || finished(transferFrom, return == false)))

erc20-transferfrom-revert-to-zero

It is expected that calls of the form transferFrom(from, dest, amount) fail if the address value provided

in the dest in-parameter is the zero address.

[](started(transferFrom(from, to, value), to == 0)[](started(transferFrom(from, to, value), to == 0)

 ==> <> (reverted(transferFrom) || finished(transferFrom, return == false))) ==> <> (reverted(transferFrom) || finished(transferFrom, return == false)))

erc20-transferfrom-fail-exceed-balance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance

of address from is expected to fail.

[](started(transferFrom(from, to, value), value > balance[from])[](started(transferFrom(from, to, value), value > balance[from])

 ==> <> (reverted(transferFrom) || finished(transferFrom, return == false))) ==> <> (reverted(transferFrom) || finished(transferFrom, return == false)))

erc20-transferfrom-correct-allowance

Skylabs Staking Security Assessment

It is expected that non-reverting invocations of transferFrom(from, to, amount) that return true

decrease the allowance of the address in msg.sender for the address in from by the value in amount . Two

special cases are taken into account:

1. An allowance that equals type(uint256).max is treated as an exception and interpreted as an

unlimited allowance that does not need to be reduced in order for this check to pass.

2. If the owner of the tokens that are transferred invokes transferFrom (i.e. when the address in

msg.sender equals the address in from) we do not require an update of the allowance.

[](willSucceed(transferFrom(from, to, value))[](willSucceed(transferFrom(from, to, value))

 ==> <> finished(transferFrom(from, to, value), ==> <> finished(transferFrom(from, to, value),

 return == true return == true

 ==> ((allowances[from][msg.sender] == old(allowances[from] ==> ((allowances[from][msg.sender] == old(allowances[from]

[msg.sender]) - value)[msg.sender]) - value)

 || (allowances[from][msg.sender] == old(allowances[from] || (allowances[from][msg.sender] == old(allowances[from]

[msg.sender])[msg.sender])

 && (from == msg.sender && (from == msg.sender

 || old(allowances[from][msg.sender]) == || old(allowances[from][msg.sender]) ==

type(uint256).max)))))type(uint256).max)))))

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in combination

with a mechanism to relocate funds.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make the

codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

Skylabs Staking Security Assessment

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under the

specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Skylabs Staking Security Assessment

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

condentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by

the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes, nor

may copies be delivered to any other person other than the Company, without CertiK’s prior written consent

in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts CertiK to perform a security assessment. This report

does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors, business, business model or

legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and

blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that

each company and individual are responsible for their own due diligence and continuous security. CertiK’s

goal is to help reduce the attack vectors and the high level of variance associated with utilizing new and

consistently changing technologies, and in no way claims any guarantee of security or functionality of the

technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development.

You agree that your access and/or use, including but not limited to any services, reports, and materials, will

be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens are emergent

technologies and carry with them high levels of technical risk and uncertainty. The assessment reports could

include false positives, false negatives, and other unpredictable results. The services may access, and

depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER

MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND

Skylabs Staking Security Assessment

“AS AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO

THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO

THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE

FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND

ALL WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT

LIMITING THE FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES,

THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER

PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH

ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE

OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK

PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND

THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS

OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY

STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES

ANY REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE

ACCURACY, RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED

THROUGH THE SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY

ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR

DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY

PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM

CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER

MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED

TO, ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

Skylabs Staking Security Assessment

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY

OR OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES

OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT

REPORTS OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF

FINANCIAL, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Skylabs Staking Security Assessment

About

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and correctness

of smart contracts and blockchain-based protocols. Through the utilization of our world-class technical

expertise, alongside our proprietary, innovative tech, we’re able to support the success of our clients with

best-in-class security, all whilst realizing our overarching vision; provable trust for all throughout all facets of

blockchain.

Skylabs Staking Security Assessment

